Chapter 4
ANALYTICAL TOOLS

BACKGROUND

In order to evaluate the data collected a number of definitions and analytical tools
are required. The purpose of this chapter is to assemble this information for use in
subsequent data analysis. The discussion which follows is an elaboration and
application of some of the concepts introduced in Chapter 1.

ATMOSPHERIC EXTINCTION

Figure 4.1 illustrates in schematic form the
atmospheric extinction of an incident beam
due to scattering and absorption by air
molecules and aerosol particles. Note that
the total loss of beam intensity dI, at a
particular wavelength A when radiation pas-
ses through a medium of thickness dz can
be expressed as the sum of several terms. A
simplifying assumption which can often be

made is that the aerosol particles only Figure 4.1: Ammospheric extinction is

possess a real refractive index due to scattering and absorption by
@.1) molecules and aerosol particles.

m=mgy +im

(i.e. that absorption is negligible) and that the radiation wavelength does not
coincide with a CO, or water vapor absorption band. Under these assumptions the
total intensity loss dI, as radiation passes through a layer dz can be written:

dI)\ = dIRA + dIO)\ + dIN?\ + de)\ = —(am + (87559 + 1858 + ap)\)'Io)‘ dZ (4.2)

where o, = og, + ap, + an, + o is the total atmospheric extinction coefficient,
o, 18 the extinction coefficient due to molecular (Rayleigh) scattering, ¢, and
oy, are due to ozone and NO, respectively, and oy, is the extinction coefficient
due to aerosol scattering. Note that the Rayleigh scattering term is due primarily to
gaseous atmospheric oxygen and nitrogen, while extinction due to ozone and NO,
occurs primarily in well-defined layers in the stratosphere.

For a given thickncss dz the absolute value of dI/I;, = —«a,-dz corresponds to
the probability that a photon in the beam will be scattered from it when passing
through the thickness dz. Integration of this differential equation leads to the
familiar Lambert-Beers’ attenuation law:

L@ = Ly - explar, + agy + awm + o)zl = L  exp(~a,°z) 4.3)
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SCALE HEIGHT AND OPTICAL DEPTH

The quantity z is the "depth" of the atmosphere, an elusive quantity because the
density of the atmosphere falls off as an exponential function of height. In a simpli-
fied model it is convenient to define a scale height H, and to assume that the
atmosphere extending to this aititude is uniform.

Another useful concept is the air mass
M illustrated in Figure 4.2. Unit air
mass M = I would correspond to the I /
situation when radiation is vertically 4
incident upon the atmosphere. In this T T
case the optical depth T can be 7= z M =1
introduced instead of the extinction P v M
cocfficient as shown in Equation 4.4, I l

7 7

From this result it is apparent that the
optical depth 7 = a-H,. Note that just 77 777777
as extinction coefficients are additive
when various atmospheric constituents
are being considered, so are atmo-
spheric optical depths.

Mo2 cor 2=HM thus I=1-e""" [ .c"¥ (44

1 H, ?

We can now express the scattering probability for a photon passing through a layer
of atmosphere of thickness dz as follows:

Figure 4.2: Air mass M and scale height
H, are useful parameters.

[/ — dr = T& 4
A o-dz __Hp 4.5)
Or using the second expression in Equation 4.4:
c;II = 1-dM (4.6)

When written in this form it is apparent that the optical depth can be interpreted as
the probability that a photon will be scattered during its passage through a given air
mass interval dM. Assuming that the dominant extinction process is single scatter-
ing (neglecting muitiple scattering is a reasonable assumption in view of the calcu-
lated mean free path of ca. 87 kilometers for a 550 nm photon in a clear atmo-
sphere [Chapter 1, p 71), the optical depth of a given component can be interpreted
as the probability that a photon in the direct solar beam will be scattered.

AIR MASS CORRECTICNS

The air mass M which appears in Equation 4.4 will be closely approximated by
1/cos 6, where 8, is the solar zenith angle, provided the solar zenith angle does
not exceed 60° [Russell, 1993]. For the large zenith angles commonly experienced
in the Arctic, however, it becomes quite important to correct the air mass for the
curvature of the Earth and to correct for refraction due to the vertical structure of
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the atmosphere. This matter has been addressed in detail by Fritz Kasten and
Andrew Young [Kasten, 1989; Young 1994] and others. The following algorithm
provides a convenient and accurate method for computation of the Rayleigh air
mass my as a function of the true solar zenith angle 6,:

1.002432 cos®8, + 0.148386 cos® z + 0.0096467 4.7

m =
® cos@, + 0.149864 cos?0, + 0.0102963 cos6, + 0.000303978
i

The true solar zenith angle is available from well-known algorithms when the time
and the geographical location are known, so that Young’s equation for m; can be
readily incorporated into data handling routines.

Because the ozone and NO, layers are at an altitude of 20-30 kilometers the air

mass for these atmospheric components will be slightly less than the Rayleigh air
mass as given by Equation 4.7. For an observer at elevation 4, the air mass can
be expressed as

Reg + Iy
J(Rg+h,)? - (Ry+h,) -5in%0,

4.8)

where 6, is the solar zenith angle, Ry is the Earth’s radius, and #; is the
elevation of the layer of interest [Komhyr, 1989].

DIRECT BEAM IRRADIANCE

As mentioned in Chapter 1 the solar extraterrestrial irradiance I, varies during the
year due to slight variations in the distance from the Earth to the Sun. N is the day
of the year (note that the Earth is closest to the Sun on January 3rd). Thus I, can
be expressed by

I, = Iy - [1 + 0.033 - cosxw {N-3}/365)] 4.9)

where Iy = 1367 W/m® is the currently accepted value for the solar constant
[Beckman, 1991, p 6]. The solar spectral irradiance I,(\) will of course be subject
to the same correction factor, so that the direct solar beam irradiance reaching the
entry aperture of a pyrheliometer can be expressed as:

) = [(A) e T Com) ) (4.10)

with the exponent consisting of my 7(N) + Mg 7o(N) +myTy(N) + mp 7p(\) and
corresponding to Rayleigh, ozone, NO, and aerosol extinction respectively. Note
that in general the air mass is dependent upon the solar elevation angle as well as
the altitude of the observer z,.

As we have seen in Chapter 3, Instrumentation, the data collected consists of pyr-
heliometer output signals V(N\) for the wavelengths of interest with the instruments
designed to provide linear response: V(A) = C-If \). On this assumption we can

Chapter 4 -55- Analytical Tools



rewrite Equation 4.10 as:
V(A) = V;(’b) .e"zi m Ty 4.11)

where V, () is the channel voltage which would be read at the top of the atmo-
sphere at the current Earth-Sun distance. Equation 4.11 can be rearranged to yield
an expression for the aerosol optical depth 7, which is the physical quantity we
want to reveal:

tp = — [NV -InV(A) Mgt g-myt -1yt ] @.12)
mp
Following [Russell, 1993] we define Vi(\) as the voltage which would be
measured if aerosols were the only attenuator:

Va(h) = V(2 -¢ "0 moto@ mymu® 4.13)

whereby Equation 4.12 can be rewritten as:

) = mi [ Vi(A) ~InV,(A)] 4.14)
P

If all quantities in Equation 4.13 are known (i.e. the measured value V(\} plus
Rayleigh, ozone and NO, optical depths and air masses), then V(A\) can be
computed. If the top of the atmosphere voltage V,’(\) is also known, e.g. from a
Langley plot, then momentary values of the aerosol optical depth 7,(A\) can be
computed from Equation 4.14 or 4.12. The methods employed for determination of
Rayleigh, ozone and NO, optical depths as well as corrections for temperature
variations and changes in atmospheric pressure are described in Chapter 6.

Solving Equation 4.14 for In V,(\) as a function of 7, yields the following useful
relationship:

InV, = nVy(A) -t J(A)-m, 4.15)

The equation shows that for periods of observation during which the aerosol optical
depth at a given wavelength is constant, plotting In Vp(A) against the aerosol air
mass factor mp should yield a straight line graph with a slope of —7(\). This
important result is the heart of the technique we have used to determine the aerosol
optical depths reported in our data presentation.

The uncertainties associated with this measurement technique have been evaluated
in some detail by [Russell, 1993]. Experimental measurements using various aper-
tures to assess the effect of diffuse light have been performed and are reported in
connection with the description of instrumentation in Chapter 3.
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AEROSOL PARTICLE SIZE

Having described the process required to find aerosol optical depths 7(\), we
describe in the following the analysis required in order to determine the aerosol
particle size distribution n(7). In this connection we will use some important
quantities presented previously: the aerosol size parameter x and the scattering
efficiency factor Q,.(x,m), where m is the index of refraction of the particle.

Aerosol size parameter
The size parameter x is given by:

L L L L L e L L
-

= 2y 4.16) - =2
A

where r is the radius of a spherical
particle, and A\ is the wavelength of
the incident radiation. The size para-
meter is the ratio of the circumference
of the particle to the wavelength.

Extinction efficiency factor

The extinction efficiency factor Q..

describes the scattering power of a o 'é' S s ':'u;
molecule or an aerosol. For a spherical 7
object with a diameter substantially
larger than the wavelength diffraction
effects can be neglected, the scattering A A
cross section corresponds simply to the 0 5 10 13 20
geometrical cross sectional area w72, p=2xi—1

and @,, = 1. For much smaller (sub- Figure 4.3: This classic illustration due to
millimeter) particles light will be scat-  van de Hulst shows scattering efficiencies of
tered from the beam due to diffraction  large dielectric spheres [van de Hulst, 1957].
even when it passes outside the geomet-

rical cross section.
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From physical optics it can be shown that for large particles with significant dif-
fraction effects Q,,, approaches the value of 2. As particle sizes are further
reduced (to tens of microns and less) the incident radiation interacts in a complex
manner, and results like those shown in Figure 4.3 are observed. The effective
cross section is then given by Q,,, w'r? where knowledge of the functional form of
Q... can be obtained from the Mie theory or by means of approximation methods
such as van de Hulst’s theory of anomalous dispersion [Chapter 1, p 10].

This theory yields the following approximation to the scattering efficiency factor:

Q.(p) =2 - -:—-sinp + 2.1 - cosp) @.17)

P
with Q,, expressed here as'a function of the normalized size parameter p defined
as follows:
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2’;“’ m-1) (4.18)
Note that Q,, depends through this variable on the three fundamental scattering
parameters: wavelength \, the particie radius r and the refractive index m of
the particle. Using the size parameter x = 2xr/\ allows us to write Q,.(x,m).

p=2x-(m-1)=

It is this scattering efficiency factor which is displayed in the lower panel of Figure
4.3. Although the theory fails to reproduce the fine structure shown by the Mie
theory, this is often unimportant in atmospheric applications because of the mixture
of sizes occurring in natural aerosols.

The wavy structure visible for larger
values of x (and thus of p) in Figure
4.3 is due to interference between the
light which is transmitted through the
particles and the light diffracted around
them. Notice that the separation Ap
between successive extrema is about
27. For large values of x (o > 10)
Q... no longer varies so much, imply-
ing that scattering for this range of
particle sizes is not strongly dependent  Figure 4.1: Scarering centers with effective
on wavelength (so clouds with micron-  cross sections Qg1 due to diffraction.
size particles appear white).

Consider scattering from a beam of radiation of cross sectional area A. Figure 4.4
shows how scattering centers with effective cross sectional areas Q.. w-72 scatter
radiation from a beam passing through a medium with thickness dz. Now assume
that the particle density N, in this medium is such that it is unlikely that the partic-
les will occlude one another. The chance of scattering for the incident photons can
then be expressed as follows:

dr| _ nr2-Q,,, NyA-dz
I A
The numerator in the middle expression in this equation corresponds to the effective
scattering area @r?-Q,, of each particle multiplied by the particle density N, and
the volume A-dz of the beam segment, i.e. by the number of particles. The de-

nominator is the total beam area A. Thus the ratio is the effective scattering area
divided by the rotal area.

- nr2Q, N, dz 4.19)

So far we have assumed that we are dealing with particles of uniform radius r. If
the distribution of particle sizes is characterized by a dimensionless function n(7),
then the probability of scattering for a beam passing through dz becomes:
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JEII—[ = dz- f : nrz-Q, . Nyn(r) dr 4.20)

Equating this result with the previous expression for the scattering probability from
Equation 4.5 yields:

L‘;’[ - ‘}'Id"' = -7 1rQNyn(r) dr @.21)
P
T = H, N, [ nr2-Q n(r) dr 4.22)

It is this relationship between the aerosol optical depth and the size distribution
which is often cited in the literature and taken as the starting point for an analysis
of the optical detection of the acrosol particle size distribution 7n(r).

The task of extracting n(r) from Equation 4.22 involves the solution of a Fred-
holm integral equation. A detailed description this mathematical problem and how it
is solved has been and continues to be a subject of considerable interest in the liter-
ature of atmospheric physics [Twomey, 1962, Quenzel, 1970; Kaufman, 1994,
Nakajima, 1983, 1986, Amato, 1996; Box, 1996, Shifrin, 1996]. S. Twomey’s book
on the mathematics of inversion in remote sensing offers a highly recommended
comprehensive treatment [Twomey, 1977].

The essence of the problem is as follows. We have the following optical depth data
available from our measurements:

wavelength A A c. An

aerosol optical depth T\ T R TN

Table 4.1: The optical depth data available for further analysis has
the structure shown here.

In the usual solution strategy the functional form of the unknown function n(r) is
assumed, and the function includes N fitting parameters. A set of variational
equations must be formed and reduced to a set of N x N equations using the method
of residuals to find new values of the fitting parameters. The goodness of fit is
checked using Equation 4.22, and iteration is continued until the value of the
integral matches the observed values of 7 as closely as possible at all of the
measured wavelengths (or the solution diverges). This generalized least squares
method is described in standard textbooks of mathematical analysis [Press, 1988].
An overview of the inversion algorithm used in this work is shown in Figure 4.5 on
the following page.
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INVERSION ALGORITHM

7 Experimental Data
NS
|| Al ™| 2| - | T "

Form a variational equation for each A-value:

ot A ot Ab ot, A (0b3) ©
— tAgt ' + ‘ac+t... = T,(005)~-17
i > | aa ab ac A A

M equations (N parameters: a, b, ¢, ... where N < M)

| Reducetoasetof Nx N

equations using the residuals method
A"“Ax = A%b

Solve the N x N equations in the unknowns
Aa, Ab, Ac, ... using Gaussian elimination.

Increment the values of the parameters
a, b, c, ... using Aa, Ab, Ac, ...

Check the result for goodness of fit by
computing 7, and comparing with 7,(obs).

Is the fit OK?

< — NO

YES

!
Vv

Display the result, the inversion is

Figure 4.5: Overview of the inversion algorithm used in this work
to find particle size distributions.
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PARTICLE SIZE DISTRIBUTIONS

1t is helpful to consider various reasonable options for the particle size distribution
function n(r) which might be used to analyze data and at the same time to
establish an intuitive feeling for the physical meaning of the equation

t, = H, Ny [ nr2Qn(r) dr @.23)

This knowledge is essential in order to make a plausible choice for the proposed
function n(r) to match a given set of optical depth data {(A;,7))}. No matter what
function one may choose to apply, a normalization requirement must be fulfilled, so
that the integral over all particle sizes yields the correct value for the particle
number in the atmospheric column.

With respect to units we recall that the scale height A, has the units of length, and
that the mean particle number density N, has the units of reciprocal volume. The
product H,-N, can therefore be interpreted as the mean number of particles per
unit area in a column up to the "top" of the atmosphere. To insure consistency with
units care must be exercised when interpreting the meaning of the size distribution
function. The particle radius value r when it appears in n(r) can be interpreted
as a dimensionless parameter, and the units pm—! can be associated with n(r). If
the integral is taken over a particle size range measured in microns, so that dr has
the units um and n(r) has the units um—/, then n(r)-dr represents the fraction
of all particles in the column having radii in the range from r to r+dr.

[ H,"Ny'n(r) dr = H,"N, 4.24)

Having stated this normalization requirement, let us review a variety of aerosol size
distribution functions which might be contemplated.

MONORADIAL DISTRIBUTICN
Suppose that all particles in the aerosol have the same radius r,. In this case a
delta function &(r — ry) is a good choice for n(7):

[ H,Ny-8(r~1,) dr = H,N, 4.25)
It is immediately clear that this function satisfies the normalization requirement due
to the propertics of the delta function. What would Equation 4.23 then predict about
the optical depth 7, ?
1, = H,"N, f:n r2-Q,, 8(r-r,) dr (4.26)
With a constant particle radius r, the integral can be reduced to:
T, = Hp ‘Ny-m -roz'Qm 4.27)

The factor H,'N, is the number of particles in the column per unit area, and the
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factor wr,>Q(x,m) is the scattering cross section of each particle. For low particle
densities the product is the total scattering probability for this wavelength and
particle size. Quickly considering a numerical example: Aitken particles at the
South Pole with a uniform radius r = 0.10 um are reported to yield an aerosol
optical depth 7, = 0.012 at A = 500 nm [Shaw, 1982]. What number concentra-
tion and total column aerosol burden would this correspond to? The scattering effic-
iency Q.. = 2 for the assumed particle radius as can be seen from Figure 4.6
(derived from Equation 4.17).

4.0

. i 1
L Scattering Efficiency vs. Radius
wavelength: 500 nm, refractive index; 1.33 ]
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Figure 4.6: The scattering efficiency factor Q,, is shown for
A = 500 nm and m = 1.33 (water).

Solving for the particle density vields the result N, = 24 cm—3 with a scale height
H, = 8 km. Assuming that the density of the individual particle is about 1 g/cm?,
the total column content in this case would be less than 0.1 ug. A comparable
value for an urban environment with 10.000 particles/cm® would be about 35 ug.
For low particle concentrations and single scattering, we have shown in Chapter 1,
Equation 1.8, that the mean free path { of a photon equals the reciprocal of the
extinction coefficient «. In this example o = 1.5:10-% cm—! and the mean free
path due to aerosol scattering would be over 600 km. In the urban environment
with high aerosol concentrations the photon mean free path due to aerosol would be
about 1.5 km, and visibility would be severely reduced.

NORMALLY DISTRIBUTED PARTICLE SIZES

Having considered a particularly simple case with aerosol particles of uniform size,
let us examine the situation when the mean aerosol radius equals 7, and the stan-
dard deviation of the normal distribution of particle sizes is s,. Such a distribution
has a number of useful properties, and it is sometimes encountered in the case of
fresh aerosol where settling has not yet caused removal of the largest particles. For
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factor 77, Q(x,m) is the scattering cross section of each particle. For low particle
densities the product is the total scattering probability for this wavelength and
particle size. Quickly considering a numerical example: Aitken particles at the
South Pole with a uniform radius r = 0.10 um are reported to yield an aerosol
optical depth 7, = 0.012 at A\ = 500 nm [Shaw, 1982]. What number concentra-
tion and total column aerosol burden would this correspond to? The scattering effic-
iency Q.. = 2 for the assumed particle radius as can be seen from Figure 4.6
(derived from Equation 4.17).
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Figure 4.6: The scattering efficiency factor Q,, is shown for
N = 500 nm and m = 1.33 (water).

Scattering Efficiency Q,

Solving for the particle density yields the result N, = 24 cm—3 with a scale height
H, = 8 km. Assuming that the density of the individual particle is about 1 g/cm’,
the total column content in this case would be less than 0.1 ug. A comparable
value for an urban environment with 10.000 particles/cm® would be about 35 ug.
For low particle concentrations and single scattering, we have shown in Chapter 1,
Equation 1.8, that the mean free path { of a photon equals the reciprocal of the
extinction coefficient «. In this example a = 1.5:10-% cm~! and the mean free
path due to aerosol scattering would be over 600 km. In the urban environment
with high aerosol concentrations the photon mean free path due to aerosol would be
about 1.5 km, and visibility would be severely reduced.

NORMALLY DISTRIBUTED PARTICLE SIZES

Having considered a particularly simple case with aerosol particles of uniform size,
let us examine the situation when the mean aerosol radius equals 7, and the stan-
dard deviation of the normal distribution of particle sizes is s,. Such a distribution
has a number of useful properties, and it is sometimes encountered in the case of
fresh aerosol where settling has not yet caused removal of the largest particles. For
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clarity we begin with the simplest case, a monomodal normal distribution function:

H N, -1(""’)2
Hp-No-n(r) = P2 0 e 2\ % (4.28)
SoY2m

checking the normalization requirement

1{r-ro\?
0o H N )
fo H,-Ny-n(r) dr = —2— e 2( %o ) dr 4.29)

Spy2 7™ 0

Changing variables in the integral to ¢ = (r — ry)/s, with dr = dr/s, we can
rewrite the integral (noting that the limits will change from "0 to oo" with the
old variable to "-o0 to 0" with the new variable):

0 H 'N o 1
f H,-N,-n(r) dr = 20 f_oo P s, dt 4.30)
0 SyV2m

The infinite integral evaluates to y2m , so the normalization condition is indeed
fulfilled:

f > H,Ny-n(r) dr = H,N, 4.31)

Figure 4.7 shows a graph of such a particle distribution function. Note that it can
be completely characterized by the three parameters: (IV;, 7y, So).
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Figure 4.7: A monomodal normal aerosol particle size distribution
extracted from the aerosol integral equation using Quenzel’s optical
depth data.
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Wavelength (nm) 400 500 600 700 800 900 1000 1500
Optical Depth || 0.078 | 0.079 | 0080 | 0.107 | 0.117 | 0.121 0.121 | 0.080
Table 4.2: Published aerosol optical depth data taken from measurements by H. Quenzel
[Quenzel, 1970, p 2920] at the Equator (30°W) on September 29th, 1965.
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Figure 4.8: Extinction vs. wavelength measured by H. Quenzel at
the Equator (30°W) on September 29th, 1965.

The fitting graph shown here was found using the algorithm described in Figure 4.5
using a monomodal normal distribution to describe the aerosol size distribution.
Examination of Figure 4.8 shows that this distribution function provides excellent
accord with Quenzel’s data. It was found that the fitting process was quite critical
with respect to the choice of initial parameters. The program aer-1nvx.cumL there-
fore includes an option for experimenting with a number of possible parameter sets
to check the fit before setting the automatic fitting routine of Figure 4.5 into
operation. '

Considerations similar to the case of the monomodal binomial distribution can be
applied to the bimodal distribution:

H ‘N _l(r—rl)l H -N. -_1.(::_'_7-)2
H,-N,-n(r) = —2 1L,20s ) , Tp2 , 20 (4.32)

s, 42m S, 21

This assumption is often more realistic, because there are usually far more small
particles than large ones, a fact which is not reflected in the assumption of a mono-
modal distribution. The bimodal model provides for two normally distributed
groups of particles: N, in the small radius range (0.01-0.50 pm) and N, in the
large radius range (> 0.50 um). In this case a total of six parameters must be
found: three (N,,r;,s;) describing the small-particle normal distribution and three
(N,,r5,5,) describing the large-particle distribution. Although the bimodal hypo-
thesis is often more realistic than the monomodal, considerable experimentation
may be required to find reasonable initial values which will lead to convergence.
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POWER LAW SIZE DISTRIBUTIONS

Because experience has shown that there are far more small particles than large
particles, it is tempting to use a power law function to describe the distribution.
Some sample data from the literature is shown in Table 4.3 with typical aerosol
optical depth data after corrections have been made for Rayleigh scattering and
ozone absorption.

| wavelength (am) 369 500 675 776 862 1048 H
| optical Depth - 0.137 0.109 0.089 0.080 0.074 0.065 |

Table 4.3: Typical published aerosol optical depth data in the visible and NIR spectral
regions from Dalu, Rao, et al. [Dalu, 1995] showing data from Southern Sardinia.

1] 3 13 T E I I il i i ] 13 ¥ 3 E B T H v ‘: . H Rt i i H - H + !
Extinction us. vavelength
Volkx parameters: o = 290152 p = 3.852
.15
kY
"._\’.
li
. A
| xR L] ‘\
k!
B
g
N
™~
] .
S, 6 Berascl dats, Daiuw, Heso, et al.
i o
IIII];IiIIZJlJEL:f‘ %Ill.g_l'ﬂﬁ}'idﬂ,lfﬂl

Figure 4.10: Extinction vs. wavelength as measured by G. Dalu, R
Rao, et al. in early summer of 1995 in Southern Sardinia.

The power law function to describe (7} in this case has the functional form

n@r) = C-r? 4.33)
In order to satisfy the normalization requirement, Equation 4.24, it is necessary to
limit the range to [r;; r,], and it turns out that the constant C must fulfill:

- |1=p

1-p __1-p
r, —-n

4.39

This is dependent on the size range selected and does not have clear physical
meaning. Some authors warn about the limitations of the power law distribution
[Seinfeld, 1998, p 426]. Nevertheless the power law distribution is used extensively
in the literature to describe aerosol size distributions. The algorithm of Figure 4.5
was used to fit the data of Dalu, et al. in Figure 4.10 to a power law distribution,
and it is a useful tool in spite of its limitations.
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SUMMARY

In this chapter we have reviewed some of the basic definitions and analytical tools
which can be directly applied to the analysis of our data from Thule Air Base. The
definition of aerosol optical depth and its relationship to Rayleigh, ozone and NO,
optical depths should be noted and in particular Equation 4.15 which plays an
important role in the interpretation of our data.

The inversion algorithm for extracting the aerosol size distribution function from
aerosol optical depth data has been described and its practical application to analyze
data from the literature has been demonstrated. After a brief presentation of the
measurements acquired at Thule Air Base in Chapter 5, we will proceed in Chapter
6 to analyze the optical depth data which we have measured.

Chapter 4 -66- Analytical Tools



